D-A267 839
AR DTIC

ELECTE
AUG1 1 1993

Standard ML Weak Polymorphism Can Be Sound

John Greiner

May, 1993
CMU-CS-93-160

School of Computer Science

DISTRIZUTION STATEMEINT » Carnegie Mellon University
B Pittsburgh, PA 15213

Approvac i puons is:ecse
Du:n:u: .‘.__::urod

Cel e m . ees B — - Ve A

Abstract

Adding ML-style references to a Hindley-Milner polymorphic type system is troublesome becausc such
a system is unsonnd with naive polymorphic generalization of reference types. Tofte [12] introduced a
distinction between imperative and applicative type variables, such that applicative type variables are never
in reference types, that provides a simple static analysis of which type variables may be polymorphically
generalized. MacQueen’s 7] weak type variables generalize imperative type variables with a counter called
a strength. The finer distinction allows a more accurate analysis of when a reference may be created, and
thus which type variables may be generalized.

Unfortunately, weak polymorphism has been presented only as part of the implementation of the SML/NJ
compiler, not as a formal type system. As a result, it is not well understood, as its more subtle points are not
well known. Furthermore, while versions of the implementation have repeatedly been shown unsound, the
concept has not been proven sound or unsound. We present several formal systems of weak polymorphism,
show their connection to the SML/NJ implementation, and show the soundness of most of these systems.

This research was sponsored in part by the Defense Advanced Research Projects Agency, CSTO, under the title
“The Fox Project: Advanced Development of Systems Software”, ARPA Order No. 8313, issued ' ; ESD/AVS under
Contract No. F19628-91-C-0168, and in part by the ONR Graduate Fellowship Program.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of the Defense Advanced Research Prri~-~s- ¢
U.S. Government.

AY 93-15900
YO0 R U e
—_—

Keywords: Data types and structures, lambda calculus and related systems, dynamic storage manage-
ment, functional constructs

1. Background

A reference cell is an assignable memory location and is a primary imperative feature of Standard ML of
New Jersey (SML/NJ). The language is unsound if reference types are polymorphically generalized in the
usual manner of Hindley-Milner type system. For example, a list of integers could be stored in the cell. and
a list of booleans read from 1it, as in the expression

let val a = ref nil in a := [1]; not (hd(!a)) end

While it is unsound to polymorphically generalize types of the form a ref, generalizing function types
involving references is not necessarily so. A simple example is

let val ref’ = fn x => ref x in (ref’ i,ref’ true) end

A number of type systems have been proposed to allow code such as this while preserving soundness {1, 4.
6, 10, 11, 13]. Of particular interest for this paper are those of Tofte [12] and MacQueen [7].

In the standard Hindley-Milner type system, generalization is allowed on all free type variables not
occurring in the (variable) type assumpiion, a mapping from variables to type schemes. However, with
references, it is also necessary to have a location type assumplion, assigning a type to each location of the
store [12]. The unsoundness of the naive static semantics is a result of generalizing type variables occurring
free in the location type assumption [12]. Since neither the store nor the location type assumption can be
known statically, a safe approximation must be made to determine those type variables which may occur in
the location type assumption and therefore should not be generalized [12].

In order to provide such a safe approximation, Tofte introduces a distinction between two classes of type
variables, called applicative and imperative. Imperative type variables are used to statically track values that
may be placed in reference cells. Applicative type variables are not used with reference types and can always
be polymorphically generalized. Additionally, imperative type variables can be generalized if the evaluation
of the let-bound expression does not lead to creation of a reference cell. Since this is undecidable. Tofte
defines an expression to be non-erpansive if it is syntactically a value other than a reference cell. The second
example above is then type correct. Since functions are non-expansive, the local type assumption maps ref’
to the type scheme V u.u -> u ref, where u is imperative, which instantiates to both int -> int ref '
and bool -> bool ref. The first example is still rejected as desired since the expression ref true is not '
non-expansive, and its type is not generalized.

b

However, this static analysis is overly conservative. In the example gl \;KS

let val ref2 = fn x => fn y => ref x Dlstrlbutlom

in Availabiity Codes
let val refi = ref2 nil —_
in . g Avall anaior
DTIC QUALITY INSPECTED & | Dist Special

(true :: !(refl ()),1 :: '(ref1l ()))
end Q\\
end v

the type of ref1 is not generalized because application expressions are considered expansive. Since there is
no generalization, the expression does not have a type since refi cannot be of type unit -> bool ref and
unit -> int ref. However, it is sound to allow such code since a different reference cell is created for each
call.

One method to improve upon Tofte’s system is to track not only which values may be placed in reference
cells, but when the cells are created. This additional information can then be used for a more accurate
definition of non-expansiveness. This is the essence of MacQueen’s weak polymorphic types

| \\\\\\\\\\\\\\\\\m\\\\\\\\m\ \

e |

2. Weak Polymorphic Types

Weak polymorphism expands on Tofte's distinction of type variables. To produce a better static analysis of
what values may be in reference cells, type variables are indexed by an integer, known equivalently as its
strength or weakness. A strength s of a type variable in the type of an expression indicates that during the
evaluation of the expression supplied with less than s arguments, no cell is created of a type involving that
type variable. Applicative type variables correspond to those of infinite strength, whereas those of finite
strength are weakly polymorphic. In particular, a type variable with strength of zero corresponds to the
possible creation of a cell with a type involving that type variable during the evaluation of the expression.

Non-critical type variables, those of positive strength, are generalized, but critical variables are not.
Thus the improvement over Tofte’s system stems from being able to generalize some imperative or weak
variables. This is similar to Tofte’s non-expansive condition for allowing generalization. A more in-depth
comparison of the two related systems in found in Section 7.

Using such motivation, we can develop the basic ideas of weak types. Since a reference cell must have a
critical type,

ref nil : ’0a list ref
and purely functional terms have types of infinite strength.!
fn x => x : ’a -> ’a
Abstraction increments strengths, since they count the number of applications until a reference is created.

fn x => ref nil : ’b -> ’'l1a ref
fn x => ref x : ’1a -> 'la ref

Similarly, application decrements the strengths in the function position.
(fn x => ref x) nil : ’'0a list ref

If the argument of an application has a weak type, the analysis must make a conservative approximation.
In general, the function may in turn apply its argument to multiple arguments, where each application
corresponds to a decrement in strengths. Statically, the conservative assumption is made that enough
applications are performed for a reference cell to be produced. For example, the strength of ’a in

"(fn x => fn y => ref x) : ’'2a -> ’b => ’'2a ref
must be made critical when the expression is used as an argument in
(fn £ => f nil nil) (fn x => fn y => ref x) : ’0a list ref
Following the previous examples, the following code would be assigned a type with negative strength
((fn £ => £ nil) (fn x => fn y => ref x)) nil : ’'~1a list ref

since the application to nil decrements the already critical strengths of the function. SML/NJ avoids
negative strengths at the top-level in most cases. But in Version 0.66, which follows this motivation closely,

(a6t val ¥ = ref (fn z => 2) in fn y => x end) () : (*"1a ~> '~1a) ref

Intuitively, the let expression has type unit => (’Ca -> ’0a) ref since a reference is created. and the
application decrements the strengths one more. More commonly, negative strengths are only nsed when
type checking sub-expressions of the original expression as in

!In SML/NJ, infinite strengths are not printed.

ref (fn z => z) : (’0a -> ’0a) ref

The strength of ’a when type checking z can be thought of as being ~1, which is then incremented by the
abstraction.

Weak polymorphism has been developed by MacQueen within the type inference algorithm of SML/NJ.
Only this algorithm has served as the definition of the type system, and unfortunately, numerous implemen-
tations have been shown to be unsound. Each has had problems which could be ascribed to implementation
details, but the concept has not been proven sound. Additionally, key ideas of the algorithm, such as this
conservative approximation at application, have not been widely known, so the system has been poorly
understood even by skilled SML/NJ programmers.

This paper addresses these problems. In Section 3, this motivation is transformed into a formalism, the
soundness of which is outlined in Section 4 and given in full in the Appendix. In Section 53, it is shown how
this formalism relates to a more algorithmic formalism, which is also sound. Other details of a comparison to
the algorithm of SML/NJ are presented in Section 6, and a comparison to other approaches is in Section 7.

3. A Declarative Formalism — AX

This section presents a formal definition of an ML-like language, related to the previous motivation of
weak polymorphism. This includes the rules and motivation for the syntax, dynamic semantics, and static
semantics, as well as the notation used in the semantics and proof.

The expression language used is defined by

z € variables
{ € locations
e € expressions = < |l|()|refe|le|er:=es|letr=e) iner|fnr=e
vEvalues == [|()|fnz=>e

The free variables of the expression, FV{e), are defined in the usual manner. Capture-avoiding expression
substitution is denoted [e'/z]e.

An empty mapping is denoted by ., while the extension of a mapping over an additional domain element

is denoted like X[d — r].2 Mappings are also abbreviated like [dy — ry,...,d, — dyn]. The union of disjoint
mappings is written as X, X'.

Dynamic Semantics

The dynamic semantics is defined by the following standard rules, where a memory g is a finite mapping
between locations and values. The judgment gt e == v, ' is well-formed if e is closed with respect to all
variables, and reads “Given the memory u, the expression e evaluates to v, resulting in a new memory pu’.”

pFrv=v.u (VAL)

pre= vy
pkrefe=>1pyl— 7]

if | @ dom(y') (ALLOC)

2Except for type assumptions, written like ['[r -]

puke= 14

ptle== u'(), s (CONT)
pher =1l p1 b es = v, pa[l — V'] UPD)
pey=es = (), pafl — 2] (
pher = foz=>el,m pi b ea => va, o a2 b [va/z]e) = v,y (APPLY)
pukeeg =>v, ll,
plFer = v, p1 b [v1/z]es = va, po (BIND)

p b let r=e; tn ea = va, pus

Static Semantics

The types and type schemes are defined by

s,a,w€E strengths = ZU {0}
«, B € tyvars
TElypes == alunil|r—1a |1 ref
o € typeschemes 1= VE.r

where a strength contezt T is a finite mapping from type variables to strengths. The trivial type scheme
V..7 is abbreviated by 7. Since all instances of a type variable in a type or type scheme must have the same
strength, strength contexts are used to maintain consistency.

The free (bound) type variables of a type or type scheme are denoted by FTV{(r) (BTV{(r)). These
functions are also extended to location and variable type assumptions, and are also extended to be n-ary
functions so that, for example, FTV(A,T) = FTWA)U FTWT).

Type variables of non-positive strength are critical, or Crits{4), if for all @ € 4, Z(a) < 0. Similarly.
NonCritg(A), if for all @ € A, E(a) > 0. A type is (non-)critical relative to T if all of its type variables are
(non-)critical in X.

Weakerg(A, s) holds if for all &« € A, () = 0o or E(a) < s, and similarly, SWeakerc(4, s) holds if for
all a € 4, L(a) < s. Let (T + ¢)(a) = E(a) + c. The minimum of 1 +5 strength contexts having the same
domain, min(X;, ,), is defined by the point-wise minimum.

A strength context ¥’ is weaker (below s) than strength context T of the same domain, &’ <, I, if for
all « € dom(T'), T'(a) = L(a) whenever L(a) > s, and otherwise £'(a) < I(a). Of particular interest is
the case when s = 1, which implies that the two strength contexts agree on all positive strengths, but that
Y’ is more critical than ¥. Note that &' +1 <, £ + | implies &’ <, E. which implies &’ <, £, but the
converses do not hold.

Instantiation is defined much as it is in the standard Hindley-Milner type system, but with restrictions
on weak type variables. A type scheme instantiates to a type,

Fe V[ay— s1,...,an —sp].r =7

if there exists a type substitution S = [ay ~— 7y,...,an — 7,] such that S(7) = 7/, and for all « € FTV(7),
E(a) < si. Similarly, relative to £, a type scheme ¢’ is more general than o, written b5 o’ > o, if for any
type 7 such that g & > 7, then g ¢’ > . For example, for any j < i,

|"_ V[a [nd i].a—-a t V[O — j]_a—oa

4

but not
F. V[— jl.a—a > Vo — i|.a—a

and the type schemes Y[a — j, 3 — i}.a—03 and ¥[a — i, 3 — j].a—3 are incomparable.

A type judgment A;T Fge: 7 reads “With strength context T, given the location type assignment A
and variable type assignment I, e has type r.” Such a judgment is well-formed if dom(X) 2 FTV(A.F, 1)
and this relation. Derivability is defined by the following rules which use the definitions in the remainder of
this section.

Fes M(z) =7

ATFpzir (VARp)
A=

—_— C

ATkgl:7ref (LOCp)

A;T kg () : units (UNITp)
ATkge:r i .

ATFgreferrrg 4 C(FTVT)) (REFp)
A;TFge: T ref '5)
A;Tkgle:r {'p
ANTkgey:1ref A;Tbkgey: (:=p)

A;T kg eri=eq : unit =D

AT keg € i To—T AT Fgsea:m .

W), !
ATFoe esir if Weakerg(FTV(m),0) (APPp)
ATz m]bso1 e m .
dom(T LAM
ATkFsfnz=>e:m—m i z & dom(T) (D)
A;I‘ l"g,gl €1 7N . ’

AT[z:VE m]Fges:m ifI & dom(T'), NonCritg:(dom(X')), and (LETp)

Weakers((FTV(m) N dom(X)) — FTV(A,T),0)

AT letz=e; inex: 7y

Note that the strengths are incremented and decremented in (APPp) and (LAMp). The side condition
of (APPp) enforces the conservative approximation previously described. The side condition on (REFp)
simply reflects the usual treatment of ref as a functional primitive having the type scheme V[a — 1].a—a ref.

fn (LETp), ¥ and ¥’ have disjoint domains by the definition of the map union operator. So, by the
well-formedness of the second precondition, the domain of ¥’ is disjoint from the [ree type variables of both
type assumptions. By using the strength context ¥’ only in the first subderivation, it is explicit that the
names of the generalized type variables are relevant only locally.

The last side condition of (LETp) states that any finitely positive type variables in 7, but not in the

type assumptions, must be generalized. Without this restriction, the following judgment is derivable.
veFlamg) let z=fn : = fny = refyin 2() : a—a ref

This is a very technical condition. It disallows the rule’s use if any type variable in FTV(r)N FTV(r) —
FTVA,T is finitely positive in &. But, if this were the case, there exists another derivation to allow the let
expression to type by renaming these type variables in 7y with fresh type variables, and adding them to £’.

To relate the locations in the dynamic and static semantics, a memory g lype maiches (with respect to
¥) the type context A , or kg u : A, if dom(u) = dom(A), if for all I € dom(p), A;. bs u(l) - A(D).

4. Soundness

This section presents an overview of the soundness proof of the formalism, including the statement and proof
sketches of the theorem and main lemmas. For the full proof, refer to the Appendix. Soundness is shown
by proving a form of type preservation under evaluation, as in [2, 3, 12, 15]). The theorem and lemmas are
similag to those for the functional Hindley-Milner and Tofte’s imperative type systems, except that extra
conditions are needed to keep tight control on the strengths of pertinent type variables. and the notion of
an occurrence adds many complications.

Unfortunately, while evaluation preserves types, it does not necessarily preserve strengths. For example.
consider the following expressions:

g = fnz=>:

e1 = fanr=fay= zegeo

ea = fna=(letb=refain fnc=1b)()
e = eres
v = fny=elegpep

In particular, eo is a function which is assigned a critical type, and e evaluates to v. The strongest typings
for e and v are

v Flamo0,g=00) € 1 B—a—a

. e }-[am—l\ﬁMOO] v [3—‘(1-—'0
It is sound to assign the stronger type to v, but the analysis provided by the formalism is not able to give
this stronger type. As will be proved, no such example exists for non-critical types.

This does not entirely contradict the usual intuition that if e evaluates to v, then v could be given a more
general type than e. In most cases, v could be assigned the same or higher strengths. For a simple example.
consider

e = (faz=z)fny=refy)
v = fany=>refy

Since .;. F[a0] € : @—a ref, the Type Preservation theorem states that there exists a critical strength s such
that .;. F{am,) v : a—a ref. But, in fact, v can be typed with the higher strength context [a — 1].

The Top-Level Type Preservation theorem states that if e evaluates to v, then e and v have the same
type, although v may require more critical strengths. Furthermore, any cells created during this evaluation
have critical types. :

Theorem (Top-Level Type Preservation Under Evaluation) I[ful e => v,y and.;. bz e 7, then
there exists Ao, and g <; X such that Ag;.Fg, v: 7, Fg, ' : Ap, and Critg ,(FTV(Ap)).

6

Proof Sketch: This is proved by generalizing the theorem to all location type assumptions, and generali ‘ng
the strength context, and then by structural induction on the evaluation derivation. The (APPLY] .nd
(BIND) cases require the following Value Substitution lemma. The last assumptior €that lemmais achieved
through the side conditions on the (APPp) and (LETp) rules. The rest of the cases are not difficult. although
extensive use is made of the Weakening and Strengthening lemmas. m

The Value Substitution lemma states that, under restrictions, the type ot an expression is stable under
substitution of a value for a variable of more general type. The result of the substitution may require more
critical strengths.

Lemma (Value Substitution) /f

e Aj.Fes, v:iT,

e A;T[z:VE,.nm]bge:m, and
o Weakers(FTV(A,) N dom(X),0),
then there erists ¥/ <; T such that A;T by [v/z]e: m.

Proof Sketch: This lemma must also be generalized to allow a proof by structural induction on the type
derivation of e. In general, the strength context for the second assumption is of the fuim (£.¥2) + ¢, and
for the conclusion, (X, ;) 4+ ¢. The strength context X5 accounts for the local type variables in the (LETp)
case, which cannot be allowed to decrease. The constant c¢ generalizes the constant 1 or —1 added in the
(APPp) and (LAMp) cases. Because of the generalization, the only interesting case is when e = r. which is
proved as an instance of the following Type Substitution lemma and Weakening. a

Lemma (Type Substitution) [f
e A;TFeyx e: T,

o S=[ay—T1,...,0n — T,
o for all1 <i<n, SWeakerg g,y (FTV(m). i{as)).
o Weakerg(FTV(A, T,)N dom(X),0),
then there exists &/ <1 T such that S(A); S(T) Fizr g,)4e € 1 S(T).

Proof Sketch: As with Value Substitution, the strength contexts are generalized so that the resulting
lemma may be proved by structural induction on the type derivation. In particular. the first assumption
uses (X,X,,5g) + ¢’, and the conclusion uses (((£’,L2) +¢), o) + ¢

The (VARpD) base case is then proved by finding an appropriate &’ such that the required instantiation
holds. Similarly, the (REFp), (APPp), and (LETp) cases require calculating an an appropriate &' such
that the side conditions hold, as well as using the Ground Type Substitution lemma to eliminate some type
variables from consideration. The remaining cases follow easily. a

There are several other lemmas to strengthen and weaken type derivations. The previously mentioned
Ground Type Substitution proves that any type derivations are stable when type variables are consistently
replaced by ground types. Strengthening states that unused variabies may be discarded from the variable
type assumption and strength context. And Weakening shows that extra assumptions are allowed in the
location and variable type assumptions and the strength context. and that the finite strength numbers may
be safely decreased. In particular, AX does not allow infinite strengths to be decreased arbitrarily. For
example,

e Flamcgmoo) fa f = fnz = fr:(a—pB)—a—0

onlyifc=ocorec<2.

5. Algorithmic Formalisms

The implementation of SML/NJ does not nse this motivational formalism. While similar, one of its core ideas
1s the use of an occurrence which approximates the surrounding syntactic context of a subexpression. The
“top-level” occurrence is named Root, and the mappings on occurrences are named Rator(-). Rand(-). Abs(-).
and Le#(-), on application functions, application arguments. abstraction bodies, and let-bound expressions.
respectively. Various versions of SML/NJ include different fields in occurrences. and the remainder of this
paper discusses the two primary ones, while other features not used are discussed in Section .

The Systems AL~ and A\¥~

Instead of incrementing and decrementing every strength in the context at every abstraction and application.
a single offset can be used. This offset, called the abstraction depth, is the first field of an occurrence.
Thus, we can split the strength context T into a strength context ¥ and an abstraction depth a such that
Y = ¥— g, and the typing rules can be written leave ¥ fixed. The abstraction depth of a given subsexpression
approximates the number of times that subexpression is applied in the whole expression. The only effect of
making such a change is an increase in efficiency.

In order to motivate the other field used here, we digress temporarily. A more restrictive version of the
typing rule for applications would be

ATks D To— ATtkses:m .
+1 e‘A'lT;}_ - = 2 if Weakerg(FTV(A,T. 72),0) (APP'p)
) L& e

The type system AX~ resulting from replacing (APPp) with (APP’p) is sound since it is a (strict) subsystem
of the original.

Surprisingly, however, the Value Substitution lemma does nof hold in AX~. For example. let

fra=a()()0)

e = fany=>letu=refyin r

I

v

so that they are assigned non-critical types
e Flamoo] U @ untt—unit—unit—a
o[z unit—unit—unit—a) Fjg00,g-1) € : B—(untt—untl—unit—a)—a
but the result of substitution is typed as
oo Flamo00, 0] [V/Z]e : B—(unit—unil—unil—a)—a
where a non-critical strength has been lowered. As a result, the soundness of this system cannot be shown

directly using the same style of proof as in Section 4.

Use of the second component of the occurrence, the martmum weakness w, allows the side condition
on (APP’p) to be replaced by a check at instantiation. For this system, there is no reason to prefer this
alternative, although some motivation will be given for other systems. The maximum weakness is an upper
bound on finite strengths in ¥. The mappings on occurrences (a.w) are then defined by

Rand(a,w}) = (a,min(a,w))

Rator(a,w) = (a-—1,w)
Abs(a,w) = (a+ 1, w)
Let(a,w) = (a,00)

Root = (0,00)

A type judgment A;I' Fyg.q e : 7 reads “With strength context ¥, at the occurrence containing the
abstraction depth a and maximum weakness w, and given the location type assignment A and variable type
assignment T', e has type 7.” Such a judgment is well-form . if dom(¥) DO FTV(A.T.7). Derivalility in
AW~ is defined by the following rules.

Fg_a () =T

AT Feamwe 7 if Weakerg(FTV(A,T,7), w) (VAR.)
Al =1 f Weakerg (FTV(A,T), w LOC
Nl reaplirreg U Wekere(FTVIAD), v) (LOC)
AT kg aw(): unit if Weakerg (FTV(A,T), w) (UNIT.)
AT H e:r
' Tw, Rand(a,w) O .
ty_a(FTV REF
Ail'bg.qwrefe: T ref f Crily-al (m) { A)
AT lhg.gwe:Tref ‘
AiTrgawle:r (a)
AT Fgqwer T ref ATrgquwer: T

AT Fy.qweri=es : unit

AT kg Ratora,w) €1 2T AT kg Randiaw 2 ™

APP4)

ATFyaqweren:r (A
AT) by, . € To

[zl Fe Absiaw if £ & dom(T) (LAMA)
ATrggwfrr=>e:n—n
AT H e, T

T Lettaw ©1 0 : , '
ATz : Y9 — ar] Fg.awes: 72 z'f't g dom(T"), NonCritg: _q(dom(¥')), and (LET4)

Weakerg ((FTV(r1) N dom(¥)) = FTV(A.T). a)

ATy qwlet z=e; tney: 1

Only the abstraction depth is incremented and decremented in (APP4) and (LAM,). But, the strength
context offset by the abstraction depth is now used in (VARA), (REF4). and (LET,).

Since Let(a, w) = (a,w), (LETA) places no upper bound on the strengths of the type variables in ¥'.
The strengths in ¥ are still bound by the maximum weakness w in the type derivation of e;. If instead
Let(a, w) = (a, w), then there would be no generalization in expressions such as f(let z=fn : = ref z 1 e).
Similarly, the top-level occurrence Root also has an infinite maximum weakness, so that no extra constraints
are placed on strengths.

By structural induction, it is easy to show that
Lemma (Maximum Weakness - AV™) IfA;Tkg.qwe: 7. then Weakerg (FTV(A,T.T), w).

In particular, this implies that the side condition of (APP’p) is satisfied by this system, also. Thus it is easy

to show by induction that
Lemma (A\X~ Contains AV~) IfA;'tyqwe:7. then AT Fg_qe:T.

In fact, these two systems are equivalent, in the sense that they admit the same derivations at the “top-level™.
This follows from

Lemma (A¥~ Contains AL~) I[fA;TFy_ge:r, and Weakerg [FTVIA.[.7), w). then AT Fy quwe:T

which is proved by structural inductici:. and using Ground Type Substitution.

The System ¥

The SML/NJ implementation is not as restrictive in its use of the maximum weakness. The foliowing changes
result in a system, AW, more like AL and the implementation.

Fg_al(z) =7

AT Feaws 7 iof Weakerg (FTV(T), w) (VAR'4)
Ay =7 ref .
(’
ATktgawl:T (LOC'y)
AT hggw(): unit {(UNIT')

For this system, it might be argued that the side condition of (VAR'4) is more efficient than that of (APPp)
since instantiation must examine the strengths of some of the type variables of 7 anyway.

This system is strictly less conservative than AW~ and AX ™, but is incomparable with AX. For example.
if
e=(fm:=:)(fna=>letc=fany=refain fnb= refbh)

then in AW we have . b, o Root € - a—J—0 ref But, in AL, the finite strengths of the argument
must be critical, so @ is at most 0. And if

e=(fn:=>(Mmr=>fay=:}z=fna=> refa)())(ref (fn a = refa))

then in AL we have .;. F[q.0) € : @—a ref. But, in AW, a can only have strength —1 at the occurrence Rool.
It can be shown, however, that an expression typable in AX is also typable in A¥ at the top-level occurrence
by only lowering critical strengths.

As a result, the soundness of this system is still open, as is its stability under substitution. One factor
that ~omplicates proofs is that only very weak forms of a Maximum Weakness lemma hold as in the following.

Lemma (Maximum Weakness - AW) I[fA; Tty qwe:T1— - —Tq, then Weakerg(FTV(m,). w).

The Systems ALt and AU+

The conservative approximation at application in all of the previous systems is overly conservative. "As
motivated, the finite strengths of the argument type must be critical, because the function may, in turn,

10

apply its argument to other arguments, possibly creating a reference cell. If the argument is purely functional.
however, this is impossible. But by using the same strength -ontext (modulo a constant offset) to type both
the function and argument, this cannot always be detected. For example, in AL,

veFlamogmoo] (fn 2 = fny = refr)(faa = a): I—(a—a ref)

Here, the argument, the identity function. must be given a weak type to match the strength of the function
domain.

The following more complicated application rule does not force the conservative approximation on the
type variables of the argument which “could have been™ of infinite strength.

. .] Weakere (FTV(72),0), and
A:lkg D Ty— ATkgiea:m o - A ’ {
= el\.;‘ - - ; 2R f¥a) > Z(a) if a€ FTV(r2)~ FTV(A.T) (APP”p)
Al Foe et T Ea) = T(a) otherwise

This effectively makes part of unification explicit in the formalism. The system AT*, using this application
rule, is strictly less conservative than AX. The soundness proof extends to this system with little modification
only if a weakening rule such as the following is also included.

ATkge:r

where £/ < T if ¥’ is point-wise less than or equal to ¥. Because of the Weakening lemma. it would be
sufficient for the side condition to state that £ and T’ aggree on all finite values in ©. Without such a rule.
the system is not stable under substitution, but still might be sound.

This weakening rule is only useful immediately preceding application, so the typing rules could be com-
bined. This would restore the syntax-directedness of the system. but would further complicate the side
conditions on the application rule.

The algorithmic system AW* can be defined simil trly. and is the most SML/NJ-like system in this paper.
Like AW, however, its soundness is still open.

6. Relation to SML/NJ

Some differences between SML/NJ and the formalisms are primarily syntactic. First, SML types correspond
to the pairing of types and strength contexts. And unlike SML, the formalisms restrict the reference prim-
itives to their fully applied forms. It would be equivalent to replace the inference rules for the reference
primitives with the foilowing

ref : VY[a— ll.a—a ref
' Y[a— x].a ref—a

= : Y[a— x].a ref—a—unit

tn the variable type assumption, or as the equivalent axioms. The disadvantage of this alternative is that
values must he given to the evaluation of partially applied primitives, which complicates the dynamic se-
mantics and loosens the correspondence of the inference rules of the static and dynamic semantics. However.
the aigorithmic formalisms are slightly stronger than the implementation in that the type inference rules for
'and := do not use Rand(-) as does general application. This is safe since these primitives are known not to
create any cells when partially applied.

The implementation implicitly uses (WEAKENp) when unifying types in the application case. It was
omitted from the majority of the formalisms because its non-syntax-directed nature complicates proofs. Or,

11

if combined with the application rule of each system, it would hinder comprehension. The systems are sound.
and admit more types for expressions, but apparently do not type more expressions with its addition.

Sequencing, ey;ea, can be treated as syntactic sugar for lel z=¢ in e2, where z is new. The type inference
rule in the declarative framework would be

ATbksey: AlTkcer:m
A;lbFcersen:m

(:p)

In the declarative formalisms, either definition of sequences admits the same expressions to be typed. al-
though the definition as a let expression allows more derivations.

Also, the implementation has three additional fields in the occurrence. The lambda depth is similar to the
abstraction depth, bu' is not decremented in Rator(-). Its use seems to be to prevent function expressions
from being given critical types (except when the function is used as an argument, of course). In later versions.
the base field provides a simpler, but unsound, analysis which allows

(let val x = ref (fn z => 2z) in fn y => x end) () : (’1a -> ’'1a) ref

It is unclear how either of these relate to the declarative formalisms. The outer field allows curried function
applications to be treated somewhat like a single uncurried application. by using the same occurrence for
each of its arguments. This corresponds to having a single application rule for typing multiple curried
arguments at once, as in

AillFeyne:n— - Th—7 AT Fse:ni if Weakere(FTV(m:).0),
ATFgegep...eq:T foralll <i<n

(APP — manyp)

Because of side effects, the implementation effectively does not use the same strength context when type
checking multiple antecedents of an inference rule. For example, when type checking the following expression.
the implementation decrements the same strength counter for each application £().

fn a => let val f = fn b => fn ¢ => ref a in £(); £(); £() end
’0a -> ’¢ -> ’'0a ref

However, the formalisms allow the expression to have the type a-—y—a ref. with the expected strength.
S(a) =2.

7. Comparisons with Other Related Systems

Weak polymorphism is often explained as it is here, as a generalization of Tofte's imperative type system.
but this is not entirely correct. Tofte's system uses fwo inference rules for type checking let expressions.
One generalizes all type variables when the let-bound expression is non-expansive. The other generalizes
applicative type variables when the expression is expansive. If an expression of critical type were necessarily
expansive, then the let type inference rule would subsume both cases, but this is not so. For example, in the
declarative systems,

viobamsfna=>(letr =refain fny=z)): a—a ref

only if s < 0. Thus, the expression is of critical type, but non-expansive. Thus. we conjecture that restricting
any of the formalisms to using only the strengths 0 and 50,3 and augmenting it with Tofte's non-expansive
let type inference rule is strictly more powerful than Tofte's system.

Where 0 -n=0,04+n =0, and o -~ n =0, for any n.

12

Hoang, Mitchell, and Viswanathan [4] proved the soundness of a different type system based on weak
types. They permit different strengths on separate instances of a type variable in a type as in

fn £ => £ nil : (’sa list -> ’'sa) -> (s —1)a

for any finite strength s. The decremented strength of the function result reflects the single application in the
function body. This generalization of the SML/NJ approach gives a more informative analysis of strengths.
even for purely functional terms as above, which eliminates the need for the conservative approximation
of strengths at function applications. As a result, they claim that their system is more general than that
of SML/NJ and provide empirical evidence of this, but they lack a formalization of SML/NJ to prove the
claim.

In their analysis of reference creation, both weak and imperative types label type variables with infor-
mation. Another approach is to label type arrows with effects, an approximation of the change in the store.
The static semantics then derives both a type and an effect for an expression, and generalization is then
defined relative to those effects. This approach is taken by Damas [1], Leroy and Weis [6], Reynolds [9],
Talpin and Jouvelot [10, 11], and Wright {13]. A slightly different approach is given by Leroy [5], where type
arrows are labelled with types that may occur in references. He also provides a comparison of this approach
with some of these others.

For a comparison of some of these systems to each other, see Wright [13]. Also refer to O Toole [8] for
a rough comparison of four systems, including MacQueen's.* In general, this approach appears to be more
powerful than weak types, although existing systems are incomparable. Furthermore, the systems using this
approach have simpler inference rules than those shown here for weak polymorphism. However. in practice
the approach may be unwieldy, because of the size of the type arrow labels.

Weak polymorphic types may be examined with this approach as well. As a rough outline, the types are
defined as

n[unz’t|r£r

c = Veay,....a,.T
. En . .
where E is a set of type variables with the restriction that in the type n B B T, if a € E,, then
a € E;41. (Unfortunately, we see no obvious motivation for this restriction in this setting.) Then the type
. E En- . .
T = 7{— - —Ty in the strength context € corresponds to the type 7, — ... "2=' 7, paired with the effect

Ey, where E; = {a]a € FTV(r), Z(a) < i}. The following table gives some examples of the correspondence
to SML/NJ types:

’0a ret a ref, {a}
'{a -> ’'la ref a = a ref, §
'2a -> ’b ~> ’2a ref a3 aref

(’2a => ’0c) => '1b ~> '2a (a—a) AR LAY {7}

o

Wright [14] suggests that all of these systems are too complex for a practical type system, particularly
in combination with modules. He notes that generalization is always sound if restricted to values, and gives
empirical evidence that this restriction is not a great sacrifice in programming flexibility.

4O’Toole incorrectly allows generalization of critical type variables in his formalization of weak polymorphism.

13

8. Conclusions and Future Work

We have rnotivated and described several formalisms of weak polymorphic types which are quite similar to
that of SML/NJ. In particular, the algorithmic family of calculi closely model the details of the implementa-
tion. Most of these have been proven sound with respect to the standard call-by-value operationai semantics.
Naturally, any of these could be incorporated into SML/NJ, to restore proven soundness to its type system.
But, since weak polymorphism is also used to type continuations and exceptions, it should be verified that
extending the system with these features is sound, although no complications are expected. The soundness
of the remaining formalisms, A¥ and A¥*, should also be determined, since they are closely related to the
implementation.

Despite the similarities to SML/NJ, detailed comparisons are still somewhat difficult because the im-
plementation has a broader definition of occurrences, and it uses side effects. The AW family of formalisms
could be enriched with the more general definition of an occurrence to further study some of these details.
We conjecture that using the lambda depth field allows more function expressions to be non-critically typed.
but still does not allow the type preservation theorem to hold without using more critical strengths.

These systems should be systematically compared to the alternate formalization of weak types found in
([4]. This would test the claim that their approach is strictly more general than that of SML/NJ. It also
provides a potential method of proving the soundness of AW and A¥*. should their system be more general
than these two calculi.

Many of the side conditions in the type rules are complex. This is especially true of the more powerful
application rules, which more closely model the implementation. Since simplicity is one goal of a type
system, so that it can be easily understood by the programmer, this points to a fundamental problem of
practicality for the approach of weak polymorphism.

The connection between type systems which label type variables and those which label type arrows
should also be further explored. Since specific systems of these two approaches are generally incomparable
in power, it may be worthwhile to somehow combine the ideas in one system. However, such a combination
would likely result in types too cumbersome in practice.

Acknowledgments

Many thanks go to Robert Harper and Mark Lillibridge for their many helpful ideas. | would also like to
thank Peter Lee and Mark Leone for their comments.

References

1] L. Damas. Type Assignment in Programming Languages. Ph.D. Thesis, University of Edinburgh. April,
g
1985.

[2) Robert Harper. A Simplified Account of Polymorphic References. Unpublished manuscript. April, 1992.

(3] J. Roger Hindley, Jonathan P. Seldin. Introduction to Combinators and A-Calculus. Cambridge Univer-
sity Press, London Mathematical Society Student Texts, Volume 1. 1986.

(4] My Hoang, John Mitchell, Ramesh Viswanathan. Standard ML weak polymorphism and imperative
constructs. To appear in Logic in Computer Sctence. 1993.

[5] Xavier Leroy. Polymorphic Typing of An Algorithmic Language. Ph.D. Thesis, University Paris VII.
Technical Report 1778, Institute National de Recherche en Informatique et en Automatique. October,
1992.

14

(6] Xavier Leroy, Pierre Weis. Polymorphic type inference and assignment. In ACM Symposium on Princi-
ples of Programming Languages, pages 291-302. 1991.

[7] Dave MacQueen. Source code for SML/NJ type inference algorithm.

(8] James William O Toole, Jr. Type Abstraction Rules for References: .4 Comparison of Four Which Have
Achieved Notoriety. Technical report MIT-LCS-TM-390, MIT. 1989.

[9] John C. Reynolds. Syntactic Control of Interference, Part 2. In International Colloquium on Automata.
Languages, and Programming, pages 704-722. July, 1989.

{10] Jean-Pierre Talpin, Pierre Jouvelot. The Type and Effect Discipline. In 7th IEEE Symposium on Logic
in Computer Science. pp. 162-173. IEEE Comput. Soc. Press. 1992.

[11] Jean-Pierre Talpin, Pierre Jouvelot. Polymorphic Type. Region and Effect Inference. In Journal of
Functional Programming, Vol. 2, No. 3. pp. 245-271. Cambridge University Press. 1992.

[12] Mads Tofte. Operational Semantics and Polymorphic Type Inference. Ph.D. Thesis, University of Edin-
borough. 1988.

[13] Andrew K. Wright. Typing References by Effect Inference. In European Symposium on Programming.
Lecture Notes in Computer Science, volume 582. pp. 473-491. February, 1992.

(14] Andrew K. Wright Polymorphism for Imperative Languages without Imperative Types. Technical Report
93-200, Rice University. February, 1993.

(15] Andrew K. Wright, Matthias Felleisen. A Syntactic Approach to Type Soundness. Technical Report
91-160, Rice University. July, 1991.

Appendix — Proof

This appendix presents the proofs of the soundness theorem and lemmas for system AX. as outlined in
Section 4. They are presented in the order of their dependence.

Lemma 1 (Weakening) If
o AiT kg, e,

e Zf <o Ig,

o FTWA',T') C dom(Zg,%,),
o dom(A)N dom(A’) = @, and
o dom(T) N dom(I’) = 0,

then A, AT, TV !-ga'gl e:T.

Several subcases of this weakening lemma are used, and it is proved by straightforward structural induc-
tion on the type derivation.

Lemma 2 (a-Renaming Type Substitution) [f
e A\;Tkxe:r,
e S=(ay—al,...,an—al],

o dom(S) C dom(X), and

15

e rng(S)N dom(Z) = 9,
then S(A): S(T) Fgixye: S(r).

Lemma 3 (Ground Type Substitution) /f
e A\Tkge:T,
o S=layr—r1,...,aq —],
o dom(S) C dom(X), and
o FTV(rng($)) = 0.
then S(A); S(T) kg e: S(7).

These two lemmas are special cases of type substitutions. The first one is used to show that the names
of generalized variables can be «-renamed to avoid conflicts with other strength contexts. The second is
used to eliminate unnecessary type variables from consideration. Both follow easily by structural induction
on the type derivation. See the proof of Type Substitution for details of the (VARp) case.

Lemma 4 (Strengthening) If
e A;T\[Mbgyxre:T,
o FTV(A,T,7) C dom(X), and
o dom(I"YN FV(e) = 0.

then A;Tbtge: T,

This lemma could easily be generalized to strengthen the location type assumptions, as well. but this s
unnecessary.

Proof: It is proved by simple structural induction on the type derivation. using Ground Type Substitntion
to eliminate any extra type variables occurring only in the mediating types in (:=p). (APPp). and (LETp).
For the most difficult case, (LETp), inversion of the derivation provides a ¥, and 7/ such that

AlTkgs,sre0: 7 Al[e V8. Plry s en T

NonCritg,(dom(So)) Weakerc(FTV(r') N dom(X) — FTV(A.T).0)

Without loss of generality, assume by a-tenaming on values, that r € dom(T").

Induction cannot be used yet, since FTV(7') is not necessarily a subset of dom(X. Zp). So. define 5 to be
a ground type substitution on the type variables in dom(X') N FTV(r'). Then. Ground Type Substitution
gives
AT Fg_go‘g: ey . S(T') A; r[.!: . q(VS()TI)] }“g‘g' fa . T

And S(VEq.7") = VE,.9(r) since the domains of S and Xy are non-intersecting. Induction then applies,
and the conclusion follows by (LETp). O

Lemma 5 (Type Substitution) /f
* A; r }'—(S,Sl.sn)+f’ €. T,

e S=[ay—1,....0q — 7],

16

e foralll < i< n, SWeaker g o)4+ (FTV(7),E1(a;)), and
o Weakers(FTV(A, T,) N dom(X),0),

then there exists & < T such that S(A); S(T') F((c/.5)4¢).Soyter € 2 S(T).

Proof: This is proved by structural induction on the typing derivation. The (LOCp) and (UNITp) cases
hold trivially with the definition &' = X,

The (VARp) case requires careful treatment of the domains of substitutions to show that instanti-
ation is stable under type substitution. Invertion of the type derivation states that the instantiation
}_(E.Eo.zx)‘FCz F(.t) : T holds. Let

S=[ay—7,...,an — T]

where ay,...,a;r € BTV(I'(z)), and where ag4y,...,an € BTV(I'(z)). By the definition of the instantiation
relation,

[(z) = V[aksr — s1,-- -2 Qkgm — Sm]. T’
where k + m > n, and there exists a types 7{,..., 7, such that defining the type substitution
St ={akpr =7 Okgm — T

implies Sy(r') = 7. In particular, choose S; so that, for | < j < m, if axy; € FTV(r'), then 7] is ground.

1"

so that FTV(rng(S)) C FTV(r). In addition, define the following type substitutions, where af... ., al are
new:

o S'=[a1—T7,...,0F — TE]
o 5o =[af — S(7]),....alh — S(7})]
e S3=[ars1—alf.. ., Qrpm — Apym]

Thus, S(T'(z)) = V[a! = s1,....alh — $m].8"(S3(7')), and S2(5'(Sa(7'))) = S(51 (7)) = S(r). Now detine
¥’ so that for all a € dom(¥') = dom(Z),

Y(a) = (a) + min(0, —c,) if a € FTV(rng(S)) and Z(a) < x
- 1 Z(a) otherwise

By the last assumption, and since FTV(rng(S)) C FTWr), then £’ <; ¥. And since by instantiation. for
all1 € j < m, .S'Weaker(g_gl_go)ﬂz(FTV(T;),sj), the third assumption implies that, for all 1 < j < m,
SWeaker(((z/,£5)+¢,).S0)+ca (FTV(S(7)), 55). Thus, the desired instantiation holds,

P2 Sa)+en) Zor+e S(T(2)) = S(7)
and the conclusion holds by (VAR).

The (!p) and (LAMp) cases follow simply by induction. Both the (:=p) and (APPp) cases must also use
Ground Type Substitution, while in the (REFp), (APPp), and (LETp) cases, an appropriate &' must be
calculated to satisfy the side conditions, as in the (VARp) case. For example, in the (APPp) case, inversion
gives a 7’ such that

AT H s, Soteat1 €1 T =T AT e, So)4es €27 Weaker s ©,)4, (FTV(7"),0)

To allow the last assumption to hold inductively, the type variables occurring only in the mediating type 7’
must be removed. So, define a ground type substitution S’ over the type variables in dom(T') N FTV(+') -
FTV(A,T, 7). By Ground Type Substitution,

AT i-(E.}:l.20)4"5:'0'1 €1 S,(T,)_'T AT '_(2.21.50)‘0'62 €r: S,(T’)

17

Since Weakere(S'(7') N dom(X),0), induction proves that there exists &’ <, € and £ <; ¥ such that
S(A); S(T) Fsr shten Sortertt €12 S(S(T)—=7) S(A)S(T) Fom Sar4er).Sorees €2 0 S(S (')

and let £ = min(X"”, £"). Now the side condition of (APPp) must be satisfied. To this end. define ¥’ so
that for all « € dom(¥') = dom(Z),

(a) = C"(a) + min(0, —cy) ifa e FTV(S' (7)) and &"(a) < x
- T a) otherwise

So that by the original side condition and the third assumption, the new side condition holds:
Weaker(((gl’32)+cl)y20)+,_-2(FTV(S(SI(T’))). 0)

Also, by the original side condition and the last assumption, &’ <; £””. So, the conclusion holds by Weak-
ening and the (APPp) rule. a

Lemma 6 (Value Substitution) If
Alskss, vim,
o \iT[z:VZ,.m] s s,)4c €: T2, and
o Weakers(FTV(A,)N dom(X),0),

then there erists ' <| T such that A;T bz £,)4. [v/T]e : 1.

Proof: The proof is by structural induction on the type derivation for e. The (LOCp). (UNITp). and
when ¢ # r, (VARp) cases follow from Strengthening with the definition ¥ = ¥. When ¢ = . then
F.S2)+¢ YE1.11 > 12 follows by inversion. By the definition of instantiation, there is a type substitution S
such that S(7m) = m, and for all o' € dom(S), SWeaker s o, +-(FTV(S{a')).Z1(a")). Also. S(A) = A. The
conclusion holds by Type Substitution and Strengthening

The (REFp), {!p), and (LAMp) cases holds by induction. The (:=p) and (APPp) cases hold by induction
and Weakening. In the (LETp) case. inversion states that there exists a ' and T, such that

ATz VE .n] s, cote et i 7 AT[2:VELr y VST Fzcyy4e €21 T

NonCritg,(dom(X)) Weaker(s: o)1+ (FTV(rY N dom(E,E0) —~ FTV(A, T[c : VE,.11]). 0)

By a-Renaming Type Substitution, we can assume that the type variables in £y do not clash with those in
E,. So, by induction, there exists £’ <; ¥ and & <; T such that

AT Fgn g, 5014c [v/2)er 1 7 ATy : VEo.7] s s,14¢ [v/2]e2 1 T

Let &' = min(Z”,Z"'). In order to satisfy the last side condition of (LETp), define & so that for ail
a € dom(X') = dom(X),

' min(E""(a), -c) ifae FTV(r) and £"'(a) <
a) =
T(a) otherwise

By the last assumption, ¥’ <; £, and Weakers 4.(FTV(YZ,.7),0). So,
Weakers: 5,)4.(FTV(T") Ndom(T,E,) — FTV(A.T).0)

and the conclusion holds by Weakening and (LETp). 0o

Theorem 1 (Type Preservation Under Evaluation) If

18

o pute=>uvy,

e Ajubs e,

}—E-f-c H: A!
e c<0, and

Crits +(FTV(A)),

then there exists Ag and Cg such that

e Ng+ci1 E+c

e AAg; g, v,

o Foote i’ T AAg, and

e Critg 4 .(FTV(Ao))
Proof: The proof is by structural induction on the evaluation derivatiom The constant ¢ corresponds
exactly with the abstraction depth of the algorithmic formalisms, so the strength context © + ¢ is that of
the top-level. Note that the type judgments in the assumption and conclusion use strength contexts that

are not adjusted by c¢. Since the location type assumption and strength context are extended and weakened
for each sub-derivation, the weakening lemma is needed to prove the assumptions of many induction cases.

The (VAL) case holds with Ag = . and £y = £, since u’ = u.
For the (ALLOC) case, inversion of the first two assumptions gives
pre=>v,uy p=ml—v] Afge:r Crig(FTV(7))
So, induction provides a A; and ¥g such that
So+ec<iE+e¢ AAbg ver Foote 1 AV Crits, 4+-(FTV(A))

Defining Ag = Aj[l : 7 ref], then Fgoy. o' : A, Ag. And A, Ag:i. bx, 11 7 refholds by (LOC). Since FTV(\p) =
FTV(A,, 1), the conclusion then holds.

In the (CONT) case, inversion gives
Ai.bse:Tref pbe=ly
where v = y’({). Induction then proves that there exists a Ag and T, such that
Ti+c<i84+ce AAg.bg lirref Fgpep A Ao Critg, 4. (FTV(Ao))

-

So, A, Ag(l) = T ref. Then, by the definition of type matching and Strengthening, A, Ag;.Fxg,+. v : 7. Define
To so that for all a € dom(Xg) = dom(X),

Tola) = Zi(a)+c ifae FTV(A Ao)
=0T i) otherwise

Since Crity, 4+.(FTV(A,Ag)), then £g + ¢ <1 £ + ¢. The type judgments of the conclusion then follow by
Strengthening and Weakening, since ¢ < 0.

The (UPD), (APPLY), and (BIND) cases are similar, with a pattern of induction followed by weakening.
The latter two also use Value Substitution to allow induction on the result of substitution. Because of the
similarities, only the (APPLY) case is given here.

19

For (APPLY), inversion gives a 72 such that
ple=>frr=el, it er=>vo,p0 pok [va/r]e} => vy
Al.Fxyi €1 ma—T AjukFseam Weakerc(FTV(72),0)
Induction on the derivation involving e, shows that there exists a A; and T, such that
Si+l+(c-D<E+14(e~1) AMApoksp1 far = el mo—r

Feitiee-n s A AL Crtg g (FTV(AL)
Weakening proves A, Ay;. g, e2 : T2 so that induction applies, giving a A2 and E» such that
o411+ AMAL AR Lbs, v Rope pe T AV AL A Crity, 4+ (FTV(A2))
Inversion on the function value, along with Weakening, proves
AAL A [z i) bg, e 0T AAL A Fs, 00T

So, using the trivial generalization V..r = 7. Value Substitution proves that there exists £3 <; I such
that A, A1, Ao;. by, [v2/z]e] : 7. Since ¢ < 0, then £3 + ¢ <; L2 + ¢, and induction applies again. giving a
A3 and Zg such that

So+ec<1 T3+c¢ AALA Ag b U T Foo+e oA AL A2 A Crits +.(FTV(A3))

~0

The conclusion then holds with Ag = A1, Aa, A3, O

20

